Reconfigurable SCA Applications with the FraSCAti Platform

Lionel Seinturier - Philippe Merle - Damien Fournier - Nicolas Dolet (*)
Valerio Schiavoni - Jean-Bernard Stefani (**)

* University of Lille & INRIA, France
** INRIA, France

SCC 2009 – Bangalore, India
September 21-25, 2009
Plan

1. Background & Motivations
2. Extended SCA Component Model
3. Platform Architecture
4. Platform Implementation & Evaluation
5. Conclusion & Future Work
1. Background & Motivations

SCA (Service Component Architecture)
• a component model for SOA
• 11/2005

Hosted by the Open SOA consortium
• http://www.osoa.org

Standardised by OASIS
• http://www.oasis-opencsaa.org

Platform providers
• Open Source: Apache Tuscany, Fabric3, FraSCAti, Mule, Newton
• Vendors: IBM WebSphere FP for SOA, TIBCO ActiveMatrix, Covansys SCA Framework, Paremus, Newton, Rogue Wave HydraSCA, Oracle Fusion Middleware
1. Background & Motivations

SCA Component Implementation Specifications

- service/reference
- property
- implementation
- non functional property (intent & policy)
1. Background & Motivations

SCA Assembly Model Specification
1. Background & Motivations

SCA is independent from
• programming languages
• interface definition languages
• communication protocols
• non-functional properties

SCA platform challenge
• dynamically reconfigurable runtime architectures
 research challenge #1 in Service foundations [Papazoglou 07]
2. Extended SCA Component Model

To meet this challenge

• extension of the SCA component model with reflective capabilities
 • for introspection, monitoring, control, dynamic reconfiguration

at 2 levels

• component container architecture
• support for non-functional services
2. Extended SCA Component Model

Component container architecture

• provide support for component & architecture reconfiguration
2. Extended SCA Component Model

Component container architecture

• host a business logic instance which provides the component services
• generalize the notion of a meta-level
• decomposed in some fine-grained services
2. Extended SCA Component Model

Support for non-functional (NF) services

- SCA Policy Framework provides some metadata
 - @Confidentiality, @Integrity, @Authentication
 - general purpose: @Intent, @Requires

- NF services implemented as SCA components
- NF wiring between business components and NF components
- API for dynamic management
3. Platform Architecture

Modular (plugin like) architecture to support variation points

- implementation types
 - Java 5, Java POJO, Spring, OSGi, Java supported scripting languages, Scala
- binding types
 - SOAP, RMI, OSGi, REST
4. Platform Implementation & Evaluation

OW2 (consortium for open source middleware) project
• frascati.ow2.org

Architecture implemented in Java

with the Fractal OW2 lightweight component framework
• dependency injection
• Java 5 @-based development style
• XML-based component & architecture descriptors
• structuring concepts (component personality, membrane, control interface)

2 modes for the FraSCAti platform
• standalone application server
• integrated in the PEtALS OW2 JBI ESB
4. Platform Implementation & Evaluation

Micro-benchmark

- vs Apache Tuscany

Platform memory consumption (per instantiated components)
4. Platform Implementation & Evaluation

Micro-benchmark

• vs Apache Tuscany

Component invocation time
5. Conclusion & Future Work

FraSCAti: A flexible & extensible SCA platform with

- runtime adaptation
- manageability properties
- reflective capabilities

3 original characteristics
- component-based structure for the platform itself
- non-fonctional (NF) properties provided as SCA components
- dynamic wiring/unwiring of NF components on business components
5. Conclusion & Future Work

Future work

• extend the platform with new implementation and binding types
• platform as an assembly of SCA components
• from interception-based to aspect-orientation
 • extension of the Assembly Language grammar with AOP notions (pointcut)
• widen the scope of targeted application domains
 • from SOA for IT to SOA for the Internet of Things